Вода – источник жизни, существования планеты и всего на ней живого. Она – важная часть организма человека. При рассмотрении воды, как физического объекта, ученые пользуются такими ее характеристиками, как плотность и теплоемкость. Но если с первой величиной все более или менее ясно, то по поводу теплоемкости воды возникает масса вопросов.
Понятие теплоемкости
Теплоемкость – это термин, использующийся для указания объема тепла, которое может поглотить или отдать нагретое, или остуженное тело (физический объект). Чтобы определить теплоемкость конкретного вещества или объекта соотносят количество поглощенной или выделенной теплоты в бесконечно минимальный промежуток времени и продолжительность измерения.
В физике этот процесс характеризуется также соотношением между бесконечно малым количеством теплоты и таким же малым количеством температуры.
Теплоемкость измеряют в Джоулях – «Дж», обозначают большой латинской буквой «С». Теплоемкость величина, зависимая и непостоянная, поскольку пропорциональна содержащемуся в нем веществу. Чем больше масса тела, тем больше энергии и тепла нужно для его нагревания. Таким образом, температура и масса – это основные характеристики, которыми нужно владеть для определения теплоемкости тела. При измерении необходимо знать также температуру воздуха и давление.
Другие условия
Согласно 2 задаче, даётся энергия внесистемной единицы. Следует выявить температуру, при которой вода в количестве 5 л остынет, если её первоначально возьмут при температуре кипения. При этом она выделяет 1684 кДж тепла. Это количество переводится в джоули = 1680000 Дж.
Чтобы найти ответ, надо воспользоваться формулой, в которой используется масса. С другой стороны, в задаче она не приводится. Но несмотря на это, указан объем жидкости, соответственно, для нахождения критерия допустимо подставить уравнение с коэффициентами:
Плотность ее составляет 1000 кг на м3. Но надо подставлять объём в кубических метрах. Для перевода исходного значения надо поделить его на 1000. Получается число, равное 0,005 м3.
Производятся дальнейшие расчеты, и на выходе получается выражение:
В дальнейшем применяется формула:
Получается отметка, равная 20 ºС.
Другая задача: имеется стакан, в который налито 50 г воды. Сам он имеет массу 100 г. Температура жидкости первоначально имеет показатели 0°. Необходимо найти объем тепла, необходимого для доведения воды до кипения.
Для решения этой задачи надо ввести подходящие параметры. Можно дать условное обозначение характеристикам, которые касаются стакана, в виде единицы. Всё, что касается воды, обозначается индексом 2. Далее следует найти цифры, соответствующие теплоемкости, через таблицу. Если это тара, выполненная из лабораторного стекла, то у нее будут показатели с1 = 840 Дж/ (кг * ºС). Точный показатель для воды будет иметь вид:
Масса в этой задаче приводится в граммах. После перевода получаются показатели:
Начальная температура равна 0°. Необходимо найти параметры, соответствующие температуре кипения — 100°. Стакан нагревается одновременно с жидкостью, которая наполнена им. Поэтому начальное количество теплоты необходимо получить при складывании несколько показателей. Это параметр, получаемый при нагревании стекла, а второй показатель обнаруживается после нагрева воды. Составляется формула такого вида:
Сюда подставляются имеющееся значения, после чего она принимает следующий облик:
Те или иные материалы с одинаковой массой предполагают разные объемы тепла, необходимые для нагрева. Этот показатель обычно больше у металлов, нежели у древесины, например, алюминия или поверхности из штукатурки. То есть вид материала влияет на этот показатель в той же степени, что и масса. Чтобы нагреть бетон в объеме 1 кг требуется примерно 1000 Дж.
Применение теплоемкости
Обычные люди редко пользуются понятием теплоемкости. Скорее всего, о нем они слышали только на школьных уроках физики. Те же, кто школу окончил давно и представить себе не могут, что давно позабытая физическая величина напрямую воздействует на их жизнь. От нее зависит, комфортными ли будут условия нашего существования. Дело в том, что теплоемкость является важной характеристикой:
- на нее ссылаются при определении температуры горячей и холодной воды, поступающей по водопроводу в наши дома;
- перед началом купального сезона соответствующие службы также определяют оптимальную температуру воды именно, на основе рассматриваемой величины;
- ее учитывают при создании нагревающих или охлаждающих приборов (радиатор для обогрева, холодильник);
- знание ее позволяет определить затраты на приготовление пищи в больших масштабах (в условиях ресторана, кафе, отеля).
Естественно, что обычные потребители, продавцы и повара в кафе, специальными расчетами не занимаются. За них это уже сделали инженеры, запрограммировав работу техники необходимым образом.
Расчет теплоемкости воды используют:
- при наладке работы гидротурбин;
- в производстве цементов;
- в испытании характеристик сплава металла, из которого производят самолеты и железнодорожные поезда;
- в строительстве;
- при плавке;
- в охлаждении.
Даже при исследовании космического пространства, применяют формулы, в которых задействуется рассматриваемая величина.
Примеры для тех или иных веществ
Путем экспериментов удалось выяснить, что показатель является различным для тех или иных веществ. Например, в отношении воды имеется показатель 4,187 кДж. Наибольшим он является у водорода. Для него установлено нормальное значение 14,300 кДж. Наименьшее оно у золота — 0,129 кДж.
Благодаря современным достижениям науки можно увеличить скорость обнаружения интересующих значений и свойств. Если раньше приходилось искать по справочнику соответствующую таблицу, то теперь на любом телефоне появилась опция для поиска через интернет. Наиболее примечательные вещества, теплоёмкость которых представляет интерес чаще всего это:
- воздушные массы (идеальные и реальные газы) — 1,005 кДж;
- металл алюминий — 0,930 кДж;
- медь — 0,385 кДж.
Виды теплоемкости
Существует несколько разновидностей теплоемкости. В практических целях чаще всего требуется рассчитать относительную, также известную, как удельную теплоемкость воды. Это количество тепла, извлеченное телом из внешней среды для увеличения его собственной температуры на 1 градус. Величину выражают в Кельвинах. Существует несколько подвидов удельной величины. Все они зависят от выражающей их единицы. Это могут быть физическая или молярная массы, объем. Так возникают:
- массовая;
- объемная;
- молярная удельная теплоемкости.
При этом, 1 моль равен количеству вещества, содержащего 6 на 10 в 23 степени молекул.
Та или иная величины применяются и рассчитываются в зависимости от поставленной цели. В физике их обозначают по-разному:
- массовую записывают латинской буквой С и выражают с помощью Джоулей на кг — Дж/кг*К;
- объемную — С` (Дж/м3*К);
- молярную — Сμ (Дж/моль*К).
При переходе воды из одного агрегатного состояния в другое (она может стать льдом или паром) удельная величина меняется. Интересно, что наиболее стабильной является теплоемкость воды, подогретой до 36-37 градусов. При подогреве от 0 до 37 градусов значение ее уменьшается, а после пересечения этого рубежа повышаться.
Теплоемкость и удельная теплоемкость материалов и веществ
Металлы
У металлов очень прочная молекулярная структура, так как расстояние между молекулами в металлах и других твердых телах намного меньше, чем в жидкостях и газах. Благодаря этому, молекулы могут двигаться только на очень маленькие расстояния, и, соответственно, для того чтобы заставить их двигаться с большей скоростью необходимо намного меньше энергии, чем для молекул жидкостей и газов. Благодаря этому свойству, их удельная теплоемкость мала. Это значит, что температуру металла поднять очень легко.
Вода
С другой стороны, у воды очень высокая удельная теплоемкость, даже по сравнению с другими жидкостями, поэтому нужно намного больше энергии, чтобы нагреть одну единицу массы воды на один градус, по сравнению с веществами, удельная теплоемкость которых ниже. Вода имеет высокую теплоемкость благодаря прочным связям между атомами водорода в молекуле воды.
Вода — один из главных составляющих всех живых организмов и растений на Земле, поэтому ее удельная теплоемкость играет большую роль для жизни на нашей планете. Благодаря высокой удельной теплоемкости воды, температура жидкости в растениях и температура полостной жидкости в организме животных мало изменяется даже в очень холодные или очень жаркие дни.
Вода обеспечивает систему поддержания теплового режима как у животных и растений, так и на поверхности Земле в целом. Огромная часть нашей планеты покрыта водой, поэтому именно вода играет большую роль в регулировании погоды и климата. Даже при большом количестве тепла, поступающем в результате воздействия солнечного излучения на поверхность Земли, температура воды в океанах, морях и других водоемах увеличивается постепенно, и окружающая температура тоже меняется медленно. С другой стороны, влияние на температуру интенсивности тепла от солнечного излучения велико на планетах, где нет больших поверхностей, покрытых водой, таких как Земля, или в районах Земли, где мало воды. Это особенно заметно, если посмотреть на разность дневных и ночных температур. Так, например, вблизи океана разница между дневной и ночной температурами невелика, но в пустыне она огромна.
Высокая теплоемкость воды также означает, что вода не только медленно нагревается, но и медленно остывает. Благодаря этому свойству воду часто используют как хладагент, то есть, как охлаждающую жидкость. К тому же, использовать воду выгодно благодаря ее низкой цене. В странах с холодным климатом горячая вода циркулирует в трубах для обогрева. В смеси с этиленгликолем ее используют в радиаторах автомобилей для охлаждения двигателя. Такие жидкости называют антифризом. Теплоемкость этиленгликоля ниже, чем теплоемкость воды, поэтому теплоемкость такой смеси тоже ниже, а значит эффективность системы охлаждения с антифризом также ниже, чем системы с водой. Но с этим приходится мириться, так как этиленгликоль не дает воде замерзнуть зимой и повредить каналы системы охлаждения автомобиля. В охлаждающие жидкости, предназначенные для более холодного климата, добавляют больше этиленгликоля.
Отопление и теплоемкость
Для снабжения римских городов водой использовали акведуки, в современные города она поступает по системе водопровода. При этом, основная задача, которая стоит перед инженерами, занимающимися обустройством центрального отопления, заключается в создании такой конструкции водопровода, благодаря которому вода поставлялась бы в дома беспрепятственно. В теплое время года проблем с поставкой воды нет, но с наступлением зимних заморозков создается угроза промерзания водопровода, перехода содержащей его воды в другое агрегатное состояние – лед, и соответственно разрушение всей конструкции (объем замерзшей воды увеличивается).
Вычислив теплоемкость идущей по трубам воды, и зная длину всего сооружения, инженер может рассчитать температуру, до которой нужно разогреть котел. Вместе с удельной вычисляют теплоемкость водяного пара (при 100 градусах вода закипает и превращается в пар), поскольку в котлах, обеспечивающих движение горячей воды по трубам, находится именно пар. Давление пара выше давления воды, поэтому при создании отопительной системы, и котлов в частности, используют чрезвычайно прочные материалы.
Теплоемкость воды нелинейно связана с температурой. Это значит, что для подогрева ее на 10 градусов, в промежутке от 30 до 40 нужно одно количество энергии, а для подогрева на эти же 10 градусов, но в промежутке от 130 до 140 – другое.
Первая задача
Допустим, металл меняет свои показатели температуры в пределах 20-24°. Внутренняя энергия этого вещества увеличивается одновременно на 152 кДж. Необходимо рассчитать, сколько составляет теплоёмкость металлического объекта при условии, что его масса составляет 100 г.
Для решения этой задачи надо воспользоваться специальной формулой. Достаточно подставить имеющиеся значения, но перед этим следует перевести массу в килограммы. Если этого не сделать, ответ будет неверным. В каждом килограмме насчитывается 1000 г. По этой причине 100 г необходимо поделить на 1000. Получается значение, равное 0,1 кг.
После произведенных подсчетов с использованием формулы получается такой результат:
Водяное охлаждение
Поскольку для подогрева воды требуется большое количество энергии, то ее часто используют в качестве естественного охладителя. Благодаря высокой теплоемкости, она быстро отбирает излишки энергии в виде тепла из окружающей среды.
В холодное время года за счет воды происходит обогрев поверхности земного шара, а в теплое, ее охлаждение. Эта способность теплоносителя или воды к изъятию тепла применяется при работе с лазерами и на крупных производствах. На знании теплоемкости основывается работа ядерных реакторов, точнее принцип их охлаждения. Нагретая вода охлаждает всю систему, ядерная реакция постоянно находится под контролем. В результате вращения нагретым паром турбины выделяется электроэнергия и не происходит взрыва.
Наглядно процесс охлаждения водой чего-либо можно наблюдать и в домашних условиях. Для этого достаточно отварить яйца вкрутую и поместить их в холодную воду. Спустя некоторое время жидкость нагреется, а яичная скорлупа остынет.
Теплоемкость воды – интереснейшая из ее особенностей, благодаря наличию которой жизнь на планете происходит по привычной схеме. Зная эту физическую величину, инженеры разрабатывают новое оборудование: холодильники, приборы для обогрева, работающие на масле, котлы, являющиеся частью отопительной системы.