Расчет эффективности воздушного отопления
Монтаж системы отопления невозможен без осуществления предварительных вычислений. Полученные сведения должны быть максимально точными, поэтому расчет воздушного отопления производят эксперты с использованием профильных программ, учитывая нюансы конструкции.
Рассчитать систему воздушного отопления (далее – СВО) можно самостоятельно, обладая элементарными познаниями в математике и физике.
В этом материале мы расскажем, как рассчитать уровень теплопотерь дома и СВО. Для того чтобы все было максимально понятно будут приведены конкретные примеры вычислений.
Расчет системы воздушного отопления частного дома. Расчет теплопотерь
Собственно говоря, для небольших частных или загородных домов не обязательно точно рассчитывать теплопотери. Достаточно знать баланс теплопотерь всего дома. При этом даже ошибка в расчетах на десяток процентов совсем не будет фатальной, поскольку система воздушного отопления Антарес Комфорт обладает достаточным запасом по прокачиваемым объемам воздуха, достаточно просто отрегулировать вентилятор на более высокие обороты. Но надо понимать, что вообще говоря, скорость потока воздуха на выходе из воздуховода, а точнее из вентиляционной решетки не должна быть выше 1,5 м/с (оптимальное значение), либо, в крайнем случае, выше 2 м/с (максимально рекомендуемое значение). В противном случае могут появиться вибрации или турбуленция, а в связи с этим и повышенный уровень шума. Естественно, что мощности электрического нагревателя или отопительного котла должно хватить для компенсации всех реальных теплопотерь всего дома.
При расчете системы воздушного отопления на теплопотери необходимо в первую очередь рассчитать теплопотери всех стен. При этом можно ориентировочно считать, что 5 см минераловаты имеют такие же теплопотери, как 15 см бруса или бревна, 30 см пеноблоков или 50 см кирпича. Речь идет разумеется о толщине стены из названных материалов. Т.е. например стена с 5 см минераловатного утеплителя типа URSA будет иметь такие же теплопотери, как стена из бруса толщиной 15 см. или кирпичная стена толщиной 50 см.
При расчете можно считать, что у стены из 5 см минераловатной плиты теплопотери будут приблизительно 48 Вт/м2, у стены из 10 см — 25 Вт/м2, из 15 см — 16 Вт/м2. Больше трех слоев утеплителя (5 см х 3 слоя = 15 см) обычно никто не ставит. В эти цифры входят и теплопотери каркаса дома, в котором находится утеплитель.
А как быть, если стены вашего дома состоят из разных материалов, например, сама стена из брус 150 х 150, а, а снаружи установлен еще слой утеплителя? В этом случае проще все привести к одному типу материалов – к минераловате. Как уже было сказано выше, 15 см бруса эквивалентны 5 см минераловаты, поэтому будем считать, что теплопотери нашей композитной стены эквиваленты теплопотерям стены из 10 см минераловаты (15 см бруса это 5см минераловаты, плюс еще один слой 5 см минераловаты = 10 см) – т.е. 25 Вт/м2
Теплопотери нижнего перекрытия и крыши считаются точно так же, как и теплопотери стен, но полученный результат нужно увеличить на 30% – поскольку в перекрытиях и крыше элементы деревянного каркаса распложены более часто, чем в стенах. Например, для крыши из 15 см минераловатного утеплителя теплопотери будут не 16 Вт/м2, а все 24 Вт/м2
Есть другой, более легкий способ определения эквивалентной толщины минераловатного утеплителя для расчета теплопотерь – калькулятор расчета отопления частного дома, сделанный в виде файла Microsoft Excel. На втором листе калькулятора можно поставить толщину всех используемых в стене, крыше или перекрытии материалов и получить тепловой эквивалент стены из пеноплистирола. В этом случае теплопотери q одного кв.м такой стены определяются по формуле:
где Тнорм — нормируемая зимняя температура региона, в котором построен дом, например, для Московской области это -28°С.
Для каркасной конструкции (например крыши или перекрытия) значение теплового эквивалента нужно уменьшить на 10%.
Расчет теплопотерь окон и дверей тоже не представляет сложности. Для обычного деревянного окна эпохи развитого социализма (того, что со щелями для вентиляции) это 200 Вт/м2. Для двухкамерных стеклопакетов — 100 Вт/м2. Для более дорогих и современных стеклопакетов — 80 Вт/м2. Теплопотери внешних дверей приблизительно можно принять равными 90 Вт/м2.
Кроме прямых теплопотерь (через стены, перекрытия и крышу), в любом доме есть еще теплопотери на вентиляцию. Но их проще учесть не через сам расход тепла (в Вт), а через необходимые для их компенсации объемы воздуха. Поэтому их мы учтем позже, на этапе 2.
Приведенный здесь расчет теплопотерь – приблизительный. Но он тем не менее позволяет получить баланс теплопотерь по всему дому. Стороны света, роза ветров, нагрев солнечным излучением через окна и т.д. в данном расчете не учитываются, но для небольших частных домов они и не нужны. Тем более, что полученные при расчетах цифры мы увеличим для надежности в 2 раза, получив таким образом значительный запас по требуемой мощности нагревателя или котла отопления. А мощности вентилятора системы воздушного отопления Антарес Комфорт заведомо хватит на то, чтобы при необходимости прокачать требуемый объем воздуха.
Для холодных полов первого или цокольного этажа полученные теплопотери нужно увеличить на 10%. Это, во-первых, позволит учесть возможную погрешность расчета, а во-вторых, более точно выровняет температуру на первом и втором этажах, т.к. теплый воздух с первого этажа будет всегда подниматься на второй.
После того, как для каждого элемента поверхности дома (стен, крыши, пола, перекрытий, окон, дверей) рассчитаны значения удельных теплопотерь, надо определить площадь каждого из этих элементов, контактирующую с окружающей средой и рассчитать полные теплопотери. При этом площадь определяется по внешнему контуру стен. Для расчета площади стен второго этажа высоту стен фронтонов берут до крыши, если второй этаж обогревается, а крыша и фронтоны полностью утеплены.
Полные теплопотери Q через каждый элемент поверхности дома – это произведение его площади S на его удельные теплопотери q:
У того дома, который мы рассматриваем в качестве примера, стены построены из sip-панелей, т.е. 1,2 см OSB + 14 см пенополистирола + 1,2 см OSB, удельные теплопотери q = 17 Вт/м2
Перекрытия и крыши похожие — 1,2 см OSB + 18 см пенополистирола + 1,2 см OSB, удельные теплопотери q = 17 Вт/м2
В качестве окон хозяин дома пожелал иметь двухкамерные стеклопакеты, удельные теплопотери q = 100 Вт/м2
Рассчитав все теплопотери и сведя их в таблицу, получим следующий результат:
1 Этаж | Теплопотери, Вт | Мансарда | Теплопотери, Вт |
1.1. | 467 | 2.1. | 1 294 |
1.2. | 747 | 2.2. | 760 |
1.3. | 74 | 2.3. | 1 126 |
1.4. | 133 | 2.4. | 801 |
1.5. | 921 | Итого | 3 981 |
1.6. | 2 210 | ||
Итого | 4 553 | Всего | 8 534 |
Переходим к этапу 2.
Калькулятор необходимой мощности воздушно-отопительного агрегата
Воздушное отопление жилых домов не имеет столь широкого распространения, как «классическое» водяное, но, тем не менее, заинтересованность в нем среди потенциальных хозяев все же имеет тенденцию к росту – оно доказало свою эффективность и экономичность. Сам по себе принцип такого отопления помещений заключается в нагреве специальным оборудованием воздушного потока, который потом с помощью вентиляторов направляется в помещение или в определенную его область.
Калькулятор необходимой мощности воздушно-отопительного агрегата
Кстати, самой простой и достаточно распространенной (хотя и несколько упрощенной) разновидностью воздушного отопления является установка в комнате стационарных или переносных тепловентиляторов. Более совершенные системы, обслуживающие целый дом, включают, помимо нагревательного агрегата, разветвлённую систему воздуховодов, автоматику контроля и управления, приборы очистки и обеззараживания воздуха. Нередко такая систем отопления совмещается с приточной вентиляцией, и это тоже налагает определённые требования к ее организации.
Цены на воздушно-отопительные агрегаты
Как бы то ни было, «сердцем» подобной системы отопления, независимо от степени ее сложности, является воздушно-отопительный агрегат. И его эксплуатационные параметры должны соответствовать условиям, в которых он будет эксплуатироваться – заложенного потенциала мощности должно быть достаточно для обогрева конкретного помещения или всего дома в целом. Как определиться с этим? – призовем на помощь калькулятор необходимой мощности воздушно-отопительного агрегата.
Некоторые разъяснения по применению программы будут даны ниже.
Калькулятор необходимой мощности воздушно-отопительного агрегата
Пояснения по проведению расчетов
При расчете любого генератора тепла исходят из соображений, что выработанной им энергии должно хватать на полную компенсацию тепловых потерь из конкретного помещения и далее (если речь идет о системе отопления всего дома) – из здания в целом. При этом, безусловно, закладывается и определенный эксплуатационный запас мощности.
Использовать широко распространенный «постулат», что на 1 м² площади требуется 100 Вт тепловой энергии – этот путь никак не даст точного результата. Тепловые потери, требующие компенсации за счет работы системы отопления, зависят не только, и даже не столько от площади помещений, сколько от целого ряда других разноплановых факторов. Все это реализовано в предлагаемом калькуляторе.
Важно – расчет проводится для каждого помещения в отдельности. Если планируется локальный обогрев комнаты – то полученного значения будет достаточно. В том же случае, когда просчитывается вся система отопления для дома, после расчета по помещениям, подключенным к системе, производится суммирование всех полученный показателей. Лучше всего, чтобы не допустить ошибки, заранее составить табличку, куда внести все комнаты с перечислением их специфических особенностей, а потом уже засесть за расчёты.
Итак, как проводится расчет для конкретного помещения:
- Объем помещения, безусловно, важен, и для этого необходимо указать площадь и высоту потока.
- Имеет значение количество стен, граничащих с улицей. Понятно, что чем их больше, тем выше возможные тепловые потери.
- Имеет смысл обратить внимание на расположение внешней стены комнаты относительно сторон света. С южной стороны помещение получает дополнительный «тепловой заряд» от Солнца, а вот с противоположной стороны стены такой возможности лишены начисто, и будут выхолаживаться быстрее.
- Если есть такая информация, то можно указать положение внешней стены относительно преимущественного в зимний сезон направления ветра – программа внесет соответствующую поправку. Если таких данных нет, калькулятор произведет расчет для самых неблагоприятных условий.
- Поправку не климатические особенности региона учтет следующий пункт. Необходимо указать минимальные температуры в самую холодную декаду зимы – но только не аномальные, а считающиеся для вашей местности нормальными.
- Следующее поле ввода – это состояние термоизоляции стен. Они могут считаться полноценно утепленными только в том случае, если это проводилось на основании теплотехнических расчетов. Понятно, что совершенно неутепленных стен в жилом доме вообще не должно быть – иначе нет никакого смысла затевать обустройство системы отопления.
- Весьма внушительная доля теплопотерь приходится на полы и потолки (перекрытия). Чтобы не упустить этот момент, в следующих полях ввода необходимо выбрать вариант «соседства» рассчитываемой комнаты по вертикали – сверху и снизу.
- Далее, несколько полей ввода посвящено окнам – их типу, количеству, размерам. На основании полученных сведений программа расчета введет необходимый поправочный коэффициент «на остекление».
- В комнате может иметься дверь на улицу (или в неотапливаемую зону), которая при каждом открытии будет впускать немалый объем холодного воздуха. Это требует соответствующей компенсации со стороны системы отопления.
Для замкнутой системы воздушного отопления можно переходить к кнопке «РАССЧИТАТЬ» и получать результат, выраженный в ваттах и киловаттах (в нем уже учтен 15-процентный эксплуатационный резерв).
Но нередко система воздушного отопления объединяется с приточной вентиляцией – и тогда от нагревательного агрегата требуется не только восполнить теплопотери, но и обеспечить подогрев постоянно поступающего с улицы воздушного потока. Это тоже необходимо учесть в расчетах. Если выбрать этот путь – появятся дополнительные поля ввода данных.
- Необходимо уточнить высоту потолка – для точного определения объема воздухообмена.
- Приточная вентиляция может отключаться при сильных морозах – необходимо указать нижний температурный предел ее функционирования. Это позволит определиться с максимальной амплитудой температур (с учетом поддержания в помещении комфортного уровня в +20 °С).
- И, наконец, необходимо указать предполагаемую кратность полного воздухообмена в помещении. Обычно при расчетах исходят из однократного, но на всякий случай функциональность калькулятора расширена – от 0,5 до 2 объемов в час.
После этого остаётся только нажать кнопку «РАССЧИТАТЬ» для получения результата.
Задумываетесь о воздушном отоплении дома? Тогда вам сюда…
Многие владельцы загородного жилья даже не знают толком о существовании систем воздушного отопления. Чтобы восполнить этот пробел информации, рекомендуем перейти по ссылке к статье нашего портала, посвящённой обзору воздушно-отопительных агрегатов .
Последовательность действий при устройстве воздушного отопления
Для устройства системы воздушного отопления цеха и прочих производственных помещений необходимо придерживаться следующей последовательности действий:
- Разработка проектного решения.
- Монтаж системы отопления.
- Проведение пусконаладочных работ и испытаний по воздуху и срабатыванию систем автоматики.
- Приемка в эксплуатацию.
- Эксплуатация.
Ниже рассмотрим более подробно каждый из этапов.
Проектирование системы воздушного отопления
Правильное расположение источников тепла по периметру позволит в одинаковом объёме отапливать помещения. Нажмите для увеличения.
Воздушное отопление цеха или склада необходимо монтировать в строгом соответствии с предварительно разработанным проектным решением.
Не следует заниматься выполнением всех необходимых расчетов и подбором оборудования самостоятельно, так как ошибки при проектировании и монтаже могут привести к нарушению работоспособности и появлению различных дефектов: повышенный уровень шума, дисбаланс подачи воздуха по помещениям, дисбаланс температуры.
Разработку проектного решения следует доверить специализированной организации, которая на основании представленных заказчиком технических условий (или технического задания) займется решением следующих технических задач и вопросов:
- Определение тепловых потерь в каждом помещении.
- Определение и подбор воздухонагревателя требуемой мощности с учетом величины тепловых потерь.
- Расчет количества нагретого воздуха с учетом мощности воздухонагревателя.
- Аэродинамический расчет системы, производимый для определения потерь напора и диаметра воздушных каналов.
После завершения проектных работ следует приступать к покупке оборудования, учитывая его функциональные возможности, качество, диапазон рабочих параметров и стоимость.
Монтаж системы воздушного отопления
Работы по монтажу системы воздушного отопления цеха можно выполнить самостоятельно (силами специалистов и работников предприятия) либо прибегнуть к услугам специализированной организации.
При самостоятельном монтаже системы необходимо учесть некоторые специфические особенности.
Перед началом монтажа не лишним будет удостовериться в комплектности необходимого оборудования и материалов.
Схема расположения системы воздушного отопления. Нажмите для увеличения.
На специализированных предприятиях, производящих вентиляционное оборудование, можно заказать воздуховоды, врезки, дроссельные заслонки и прочие стандартные изделия, применяемые при монтаже системы воздушного отопления производственных помещений.
Дополнительно понадобятся следующие материалы: саморезы, алюминиевый скотч, монтажная лента, гибкие утепленные воздуховоды с функцией шумоглушения.
При монтаже воздушного отопления необходимо предусмотреть утепление (тепловая изоляция) подающих воздуховодов.
Данная мера предназначена для исключения вероятности образования конденсата. При монтаже магистральных воздуховодов применяется оцинкованная сталь, поверх которой наклеивают фольгированный самоклеющийся утеплитель, толщиной от 3 мм до 5 мм.
Выбор жестких либо гибких воздуховодов или их комбинации зависит от типа определенного проектным решением воздухонагревателя. Соединение воздуховодов между собой осуществляется при помощи армированного алюминиевого скотча, металлических либо пластиковых хомутов.
Общий принцип монтажа воздушного отопления сводится к выполнению следующей последовательности действий:
- Проведение общестроительных подготовительных работ.
- Монтаж магистрального воздуховода.
- Монтаж отводящих воздуховодов (распределительных).
- Установка воздухонагревателя.
- Устройство тепловой изоляции подающих воздуховодов.
- Монтаж дополнительного оборудования (при необходимости) и отдельных элементов: рекуператоры, решетки и т.д.
Расчет вентиляции: вытяжной и приточной
По способу работы вентиляционные схемы можно разделить на три группы: вытяжные (удаляющие использованный воздух), приточные (впускающие в помещение чистый воздух), и (рекуперационные совмещающие функции первой и второй категорий).
В любом случае при расчете вентиляции необходимо принимать во внимание множество факторов — это:
- давление в воздушных каналах;
- расход воздуха;
- мощность подогревателя;
- площадь сечения вентканалов.
ДАВЛЕНИЕ И СЕЧЕНИЕ
На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.
При расчёте диаметра каналов эмпирически принимают следующие величины:
- Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
- Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.
При этом добиваются скорости потока 2,4 – 4,2 м/сек.
Плюсы и минусы воздушного отопления
– Универсальность: Вы получаете отопление, вентиляцию, кондиционирование, очистку воздуха «в одном флаконе» – полноценную климатическую систему, а не только обогрев воздуха в помещениях дома
– Легкость, скорость, дизайн: управление производится автоматически при помощи новейших «умных» термостатов в виде новомодных электронных программируемых гаджетов; скорость нагрева обеспечивается отсутствием промежуточных звеньев (теплоносителя в трубах и радиаторах отопления) – воздух нужной температуры сразу поступает в помещения.
– Высочайшая эффективность системы, достигающая 95% с конденсационными газовыми воздухонагревателями. Логистика работы и оперативное управление температурой позволяет значительно снизить общий расход энергоносителя и экономит деньги. Для сравнения, традиционные системы водяного отопления имеют энергоэффективность не более 60%.
– Высочайшая надёжность при газовом нагреве. Отсутствие жидкого теплоносителя исключает протечки, воздушные пробки и разморозку.
– Простота обслуживания. Достаточно своевременно чистить или менять воздушный фильтр.
Недостатки отопления воздухом:
– воздушное отопление подходит для домов площадью свыше 90 кв.м. – при меньшей площади установка нецелесообразна
– монтаж воздушной системы производится до финальной внутренней отделки, поэтому оптимальный вариант – ее проектирование и установка на этапе строительства дома
– воздуховоды занимают определённое пространство, что может повлечь (но не обязательно) уменьшение высоты в местах их размещения максимально до 20 см.
– правильная реализация системы требует профессиональных расчётов и разработки проекта. Хотя сборка воздуховодов может производиться своими руками, без помощи специалистов, но требует наличия определённых инструментов.
Вычисление воздухообмена
Специалисты используют две основные схемы:
- По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
- Метод с учётом избытков тепла и влаги. Условное название «Способ №2».
Способ №1
Единица измерения — м 3 /ч (кубические метры в час). Применяют две упрощенные формулы:
L=K ×V(м 3 /ч); L=Z ×n (м 3 /ч), где
K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час; V – объём помещения, м 3 ; Z – значение удельного обмена воздуха за единицу верчения, n – количество единиц измерения.
Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.
Таблица выбора размеров вентиляционных решёток
Способ №2
При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:
где ΣQ — сумма тепловыделений от всех источников, Вт; с – тепловая ёмкость воздуха, 1 кДж/(кг*К); tyx – температура воздуха, направленного на вытяжку,°С; tnp — температура воздуха, направленного на приточку,°С; Температура воздуха, направленного на вытяжку:
где tp.3 – нормативная тем-ра в рабочей зоне, 0 С; ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0 С/м; Н – длина плеча от пола до середины вытяжки, м.
Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:
где G – объём влаги, кг/ч; dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.
Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:
k – кратность смены воздуха в помещении, раз в час; V — объём помещения, м 3 .
Расчёт сечения
Площадь поперечного сечения воздуховода измеряется в м 2 . Её можно посчитать по формуле:
где v – скорость воздушных масс внутри канала, м/с.
Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.
Расчёт потерь давления
Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:
где ג – сопротивление трению, определяется, как:
Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:
где a,b – размеры сторон канала, м.
Мощность напора и двигателя
Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое Pд на выходе.
Мощность электрического двигателя вентилятора:
Подбор калорифера
Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, разные виды рекуператоров, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:
- Qв – предельный расход тепловой энергии, Вт/ч;
- Fk – определение поверхности нагрева для калорифера.
Расчёт гравитационного давления
Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.
Примеры расчетов объема воздухообмена
Далее приводится пример расчёта вентиляции исходя из кратности обмена. Для этого будет рассмотрен частный дом, имеющий такие помещения:
- кухня — 19 кв. м;
- гостиная — 41 кв. м;
- санузел — 3 кв. м;
- детская — 14 кв. м;
- кабинет — 17 кв. м;
- спальня — 22 кв. м;
- ванная — 4 кв. м;
- коридор — 6 кв. м.
В доме высота потолков составляет 3 м. Для расчёта нужно определить объём каждого помещения. При этом получим следующие значения:
- кухня — 57 куб. м;
- гостиная — 123 куб. м;
- санузел — 9 куб. м;
- детская — 42 куб. м;
- кабинет — 51 куб. м;
- спальня — 66 куб. м;
- ванная — 12 куб. м;
- коридор — 18 куб. м.
схема воздухообмена
Используя таблицу значений кратности из нормативного документа проводится расчёт в соответствии с приведённой выше формулой:
- кухня — 57 = 57 (19 кв. м х 3) — округляем до 60;
- гостиная — 3 х 123 — округляем до 370;
- санузел — 9 = 9 (3 кв. м х 3) — округляем до 10;
- детская — 1 х 42 — округляем до 45;
- кабинет — 1 х 51 — округляем до 55;
- спальня — 1 х 66 — округляем до 70;
- ванная — 12 = 12 (4 кв. м х 3) — округляем до 15;
- коридор — 18 = 18 (6 кв. м х 3) — округляем до 20;
Здесь при расчётах было учтено, что в нормативном документе отсутствует кратность для ванной, коридора, санузла и кухни. В этом случае площадь соответствующих помещений умножили на 3. После этого итоговую величину округлили в большую сторону до значения, кратного 5.
Теперь делают суммирование по помещениям, в которые первоначально поступает чистый воздух — это гостиная, кабинет, спальня, детская. После суммирования будет получено 370 + 55 + 70 + 45 = 540 куб. м. Столько воздуха должно поступать в дом благодаря использованию вентиляционной системы.
Теперь необходимо просуммировать значения по тем помещениям, где есть вытяжная вентиляция. Речь идёт о коридоре, кухне, ванной и санузле. Будет получено значение 20 + 60 + 15 + 10 = 105 куб. м. Это количество воздуха согласно расчётам должно выводится наружу.
Исходные данные для теплового расчета системы отопления
Прежде чем приступать к подсчетам и работе с данными, их необходимо получить
Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже
- Площадь постройки, высота до потолков и внутренний объем.
- Тип здания, наличие примыкающих к нему строений.
- Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
- Количество окон и дверей, как они обустроены, насколько качественно утеплены.
- Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
- Продолжительность отопительного сезона, средний минимум температуры в этот период.
- «Роза ветров», наличие неподалеку других строений.
- Местность, где уже построен или только еще будет возводиться дом.
- Предпочтительная для жильцов температура тех или иных помещений.
- Расположение точек для подключения к водопроводу, газу и электросети.
Теплопотери в доме
Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома
Расчет мощности воздухонагревателя
Расчет мощности воздухонагревателя.
Для расчета мощности калорифера Р (Вт), необходимой для подогрева приточного воздуха требуемого объема, применяется общая формула Р=Q×0,36×(t вх.t вых.), где:
Q – приток воздуха (м 3 /ч );
t вх. (°С) – температура наружного воздуха;
t вых. (°С) – температура воздуха в помещении.
Определить температуру, до которой воздухонагреватель способен нагреть воздух, можно по формуле:
Например, при мощности калорифера 1,5 кВт и расходе воздуха, нагнетаемом вентилятором 100 м 3 /ч, выбранный прибор нагреет воздух на Δt=2,98×1500/100=44,7°С. Это означает, что при минимальном значении поступающего воздуха -20°С температура на выходе воздухонагревателя составит 45-20=25°С. Для калорифера, устанавливаемого в квартирах, мощность принимается от 1 до 5 кВт. В больших домах, офисах и других подобных зданиях воздухонагреватели могут иметь мощность от 5 до 50 кВт.
Таблица расчета вентиляции.
Для подогрева нагнетаемого воздуха устанавливаются канальные нагреватели. Устройства монтируются непосредственно в воздуховоды как круглого, так и прямоугольного сечения. Если невозможно обеспечить электропитание воздухонагревателей с производительностью, полученной в результате расчета, в качестве теплообменников используют приборы с теплоносителем из автономного отопления.
Этот вариант подогрева приточного воздуха больше подходит для загородных домов. В теплоноситель аппарата добавляется незамерзающая жидкость, устройство оборудуется автоматическими средствами защиты от замораживания. Исходя из технических характеристик воздухонагревателей и требуемой производительности определяется их количество. Число теплообменников для снижения затрат тепла на вентиляцию должно быть минимальным.
Расчет системы воздушного отопления частного дома. Расчет количества теплого воздуха.
Принимаем, что каждый кубометр воздуха может перенести 10 Вт тепла. Тогда получим следующие результаты расхода по воздуху (в час) для каждого помещения дома:
1 Этаж | Объем воздуха | Мансарда | Объем воздуха |
1.1. | 47 | 2.1. | 65 |
1.2. | 74 | 2.2. | 76 |
1.3. | 73 | 2.3. | 113 |
1.4. | 13 | 2.4. | 80 |
1.5. | 92 | Итого | 334 |
1.6. | 226 | ||
Итого | 525 | Всего | 859 |
Теперь вернемся к учету теплопотерь на вентиляцию, помните, мы говорили об этом на этапе 1?
Теплопотери на вентиляцию учитываются просто. На каждого человека нужно 30 м³/час свежего воздуха, на каждый отопительный котел – 2 м³/час на 1 кВт мощности котла, на каждую газовую плиту – 15 м³/час.
Как уже было сказано в начале статьи, в доме проживают 3 человека, есть газовая плита и котел отопления 18 кВт. Т.е. на вентиляцию нужно дополнительно 140 м³/час воздуха:
Если все это перевести в теплопотери, то для Московского региона (в котором построен наш дом) при зимней нормируемой температуре — 28°С для прогрева воздуха до комнатной температуры нужно будет потратить 23 Вт на каждый кубометр, итого 3,2 кВт на дополнительные теплопотери по вентиляции.
Теперь нужно внимательно проанализировать полученную таблицу с расходом воздуха. Например, в данном доме теплопотери в коридоре на первом этаже минимальны, а в коридоре второго этажа, наоборот, достаточно велики. Поэтому будет целесообразно сделать небольшое перераспределение потоков – часть воздуха для коридора второго этажа подать наоборот в коридор на первом этаже – на второй этаж теплый воздух все равно попадет естественным путем.
Расчёт вентиляции
Вентиляция служит для поддержания достаточного количества свежего чистого воздуха в помещении и для удаления отработанного загрязненного воздуха из помещения. Кроме того, вентиляция обеспечивает движение воздуха в помещении, что способствует устранению лишней влаги, сырости, застойного воздуха и накопившихся запахов. Для того, чтобы подобрать все необходимые комплектующие, требуется произвести расчёт системы вентиляции.
Расчёт приточной вентиляции
Расчёт приточной вентиляции выполняется для каждого из помещений в отдельности. Алгоритм расчёта зависит от назначения помещения. Так, для офисных помещений, фойе и переговорных будут применены различные зависимости.
В первую очередь, выполняя расчёт приточной вентиляции, следует обратиться к нормативным документам — сводам правил (СП) для рассматриваемого типа объекта:
- СП 44.13330.2011 — Административные и бытовые здания
- СП 54.13330.2016 — Здания жилые многоквартирные
- СП 56.13330.2011 — Производственные здания
- СП 57.13330.2011 — Складские здания
- СП 113.13330.2016 — Стоянки автомобилей
- СП 118.13330.2012* — Общественные здания и сооружения
- СП 278.1325800.2016 — Здания образовательных организаций высшего образования
В сводах правил приведены таблицы кратностей воздухообмена для различных помещений. Например, согласно п. 7.31 СП 118.13330.2012 кратность воздухообмена в магазине должна быть не менее 1. Напомним, что кратность воздухообмена показывает, сколько раз воздух в помещении должен смениться за один час. Следовательно, чтобы провести расчёт приточной вентиляции нужно определить объём помещения магазина.
Предположим, площадь магазина составляет 50 м 2 , высота потолков 3 метра. Тогда объем помещения составит 150 м 3 , а требуемый расход приточного воздуха будет равен 150·1=150 м 3 /ч.
Для других типов объектов в нормах может быть указана не кратность воздухообмена, а расход воздуха, приходящийся на одного человека. Так, согласно таблице 7.3 СП 118.13330.2012 в зрительных залах кинотеатров расход воздуха на одного зрителя должен быть не менее 20 м 3 /ч. В этом случае расчёт приточной вентиляции будет заключаться в подсчёте числа зрителей и умножении полученного значения на 20 м 3 /ч. Для зрительного зала вместимостью 300 человек получим: 300·20 = 6000 м 3 /ч.
Расчёт вытяжной вентиляции
Расчёт вытяжной вентиляции также ведётся с учетом требований сводов правил, список которых приведён выше. Например, однократный воздухообмен в магазине будет означать, что производительность вытяжной системы также должна составлять 1 объём помещения в час (150 м 3 /ч для рассмотренного магазина).
Однако при расчёте вытяжной вентиляции есть одна особенность. В «чистых» помещениях (офисы, кабинеты, переговорные, жилые комнаты и другие помещения с постоянным пребыванием человека) рекомендуется, чтобы расход вытяжного воздуха был на меньше расхода приточного воздуха. Это делается для того, чтобы «лишний» воздух уходил в смежные помещения — в коридоры и технические помещения. Тем самым обеспечивается защита от перетекания запахов из смежных помещений и жилые и офисные зоны.
Кроме того, на любом объекте есть помещения, где предусматривается только вытяжка — санузлы, душевые, технические помещения, гардеробы и другие. Как правило, нормы предписывают устраивать для них отдельные вытяжные системы. При этом расчёт вытяжных систем ведётся исходя из следующих цифр:
- Вытяжка от одного унитаза: 50 м 3 /ч
- Вытяжка от одной раковины: 25 м 3 /ч
- Вытяжка от одной душевой кабинки: 75 м 3 /ч
- Вытяжка из технических помещений: 1 крат.
Расчёт приточно-вытяжной вентиляции
Расчёт приточно-вытяжной вентиляции сводится к расчёту приточной и вытяжной систем вентиляции по отдельности. Далее, функцию двух систем может выполнять один агрегат — приточно-вытяжная установка.
Приточно-вытяжные установки обычно применяют для общеобменных систем вентиляции. Учитывая преобладание притока над вытяжкой, о котором говорилось выше, в таких установках расход приточного воздуха больше, чем вытяжного. Кроме того, аэродинамическое сопротивление приточной системы всегда выше, чем вытяжной ввиду наличия секций фильтрации, нагрева, а иногда и охлаждения. Поэтому вытяжные вентиляторы, как правило, предусматриваются меньшей мощности, нежели приточные.
Наконец, выполняя расчёт приточно-вытяжной вентиляции, можно сэкономить, предусмотрев рекуператор тепла. Это устройство, которое передаёт тепло от вытяжного воздуха приточному. В зимнее время рекуператор способен достаточно сильно прогреть приточный воздух за счёт вытяжного и, как следствие, существенно снизить мощность нагревателя.
Расход теплоты на вентиляцию
По своему назначению вентиляция подразделяется на общую, местную приточную и местную вытяжную.
Общая вентиляция производственных помещений осуществляется при подаче приточного воздуха, который поглощает вредные выделения в рабочей зоне, приобретая ее температуру и влажность, и удаляется с помощью вытяжной системы.
Местную приточную вентиляцию используют непосредственно на рабочих местах или в небольших помещениях.
Местная вытяжная вентиляция (местный отсос) должна быть предусмотрена при проектировании технологического оборудования для предотвращения загрязнения воздуха рабочей зоны.
Кроме вентиляции в производственных помещениях применяют кондиционирование воздуха, цель которого — поддержание постоянной температуры и влажности воздуха (в соответствии с санитарно-гигиеническими и технологическими требованиями) вне зависимости от изменения внешних атмосферных условий.
Системы вентиляции и кондиционирования воздуха характеризуются рядом общих показателей (табл. 22).
Расход теплоты на вентиляцию в значительно большей степени, чем расход теплоты на отопление, зависит от вида технологического процесса и интенсивности производства и определяется в соответствии с действующими строительными нормами и правилами и санитарными нормами.
Часовой расход теплоты на вентиляцию QI (МДж/ч) определяют либо по удельным вентиляционным тепловым характеристикам зданий (для вспомогательных помещений), либо по произво-
На предприятиях легкой промышленности применяются различные типы вентиляционных устройств, в том числе общеобменные, для местных отсосов, системы кондиционирования и др.
Удельная вентиляционная тепловая характеристика зависит от назначения помещений и составляет 0,42 — 0,84 • 10~3 МДж/(м3 • ч • К).
По производительности приточной вентиляции часовой расход теплоты на вентиляцию определяют по формуле
дительности действующих приточных вентиляционных установок (для производственных помещений).
По удельным характеристикам часовой расход теплоты определяют следующим образом:
В том случае, если вентиляционная установка предназначена для компенсации потерь воздуха при местных отсосах, при определении QI учитывают не температуру наружного воздуха для расчета вентиляции tHв, а температуру наружного воздуха для расчета отопления /н.
В системах кондиционирования расход теплоты рассчитывают в зависимости от схемы подачи воздуха.
Так, годовой расход теплоты в прямоточных кондиционерах, работающих с использованием наружного воздуха, определяют по формуле
Если кондиционер работает с рециркуляцией воздуха, то в формулу по определению Q£кон вместо температуры приточного
Годовой расход теплоты на вентиляцию QI (МДж/год) рассчитывают по уравнению
Аргументы в пользу выбора воздушной системы
Отопление воздухом имеет широкий ряд достоинств и некоторые недостатки. Плюсы:
- Высокий КПД. Производительность схемы при нагревании воздухом достигает 94%.
- Запуск оборудования в работу в любое время года. Можно не бояться за размораживание трубопроводов, прорыв – там нечему замерзать, поэтому при отключении магистрали и последующем включении в зиму не будет аварий.
- Сниженная эксплуатационная стоимость. Нет необходимости покупать дорогое оборудование, запорную арматуру и прочее.
- Можно соединить систему прогрева и охлаждения, обеспечивая комфортный температурный режим в течение всего года.
- Пониженная инерционность схемы, которая гарантирует быстрый прогрев комнат.
- Можно устанавливать любое дополнительное оборудование для поддержания комфортного микроклимата – увлажнители, ионизаторы, стерилизаторы.
- Универсальность. Система применяется для помещений любой площади, строений разной этажности.
- Равномерность прогрева. Не будет локальных зон с сильным нагревом.
Недостатки воздушного отопления:
- энергозависимость – отключат электричество, перестанет работать вентилятор, воздух не пойдет по трубопроводам;
- необходимость регулярного наблюдения, обслуживания схемы;
- монтаж конструкции выполняется на этапе строительства, система не меняется и не может модернизироваться в процессе всего срока эксплуатации.
Классификация воздушных систем отопления
Подобные системы отопления разделяются по следующим признакам:
По виду энергоносителей: системы с паровым, водяным, газовым или электрическим калориферам.
По характеру поступления нагретого теплоносителя: механическим (при помощи вентиляторов или нагнетателей) и естественным побуждением.
По виду схем вентилирования в отапливаемых помещениях: прямоточные, либо с частичной или полной рециркуляцией.
По определению места нагрева теплоносителя: местные (воздушная масса нагревается местными отопительными агрегатами) и центральные (подогрев осуществляется в общем централизованном агрегате и в последующем транспортируется к отапливаемым зданиям и помещениям).