С помощью гидравлического расчета можно правильно подобрать диаметры и длину труб, правильно и быстро сбалансировать систему с помощью радиаторных клапанов. Результаты этого расчета также помогут правильно подобрать циркуляционный насос.
В результате гидравлического расчета необходимо получить следующие данные:
m — расход теплоносителя для всей системы отопления, кг/с;
ΔP — потери напора в системе отопления;
ΔP1, ΔP2… ΔPn, — потери напора от котла (насоса) до каждого радиатора (от первого до n-го);
Расход теплоносителя
Расход теплоносителя рассчитывается по формуле:
,
где Q — суммарная мощность системы отопления, кВт; берется из расчета теплопотерь здания
Cp — удельная теплоемкость воды, кДж/(кг*град.C); для упрощенных расчетов принимаем равной 4,19 кДж/(кг*град.C)
ΔPt — разность температур на входе и выходе; обычно берем подачу и обратку котла
Калькулятор расхода теплоносителя (только для воды)
Q = кВт; Δt = oC; m = л/с
Точно также можно посчитать расход теплоносителя на любом участке трубы. Участки выбираются так, чтобы в трубе была одинаковая скорость воды. Таким образом, разбиение на участки происходит до тройника, либо до редукции. Нужно просуммировать по мощности все радиаторы, к которым течет теплоноситель через каждый участок трубы. Потом подставить значение в формулу выше. Эти расчеты необходимо сделать для труб перед каждым радиатором.
Конкретные расчёты
Допустим, нужно сделать расчёт для домовладения площадью 150 кв. м. Если принять, что на 1 квадратный метр теряется 100 Ватт тепла, получаем: 150х100=15 кВатт тепловых потерь.
Как соотносится это значение с циркуляционным насосом? При тепловых потерях происходит постоянный расход тепловой энергии. Для поддержания температурного режима в помещении необходимо большее количество энергии, чем для его компенсации.
Для расчёта циркуляционного насоса для системы отопления, следует понимать, какие у него функции. Это устройство выполняет следующие задачи:
- создать напор воды, достаточный для того, чтобы преодолеть гидравлическое сопротивление узлов системы;
- перекачать по трубам и радиаторам такой объем горячей воды, который требуется для эффективного прогрева домовладения.
То есть, для того, чтобы система заработала, нужно подогнать тепловую энергию к радиатору. И эту функцию выполняет циркуляционный насос. Именно он стимулирует подачу теплоносителя к приборам отопления.
Следующая задача: какое количество воды, согретой до нужной температуры, надо доставить к радиаторам за определённый период времени, при этом компенсируя все теплопотери? Ответ выражается в количестве перекачанного теплоносителя в единицу времени. Это и будет называться мощностью, которой обладает циркуляционный насос. И наоборот: можно определить примерный расход теплоносителя по мощности насоса.
Данные, которые для этого нужны:
- Количество тепловой энергии, необходимой для того, чтобы компенсировать теплопотери. Для данного домовладения площадью 150 кв. метров эта цифра 15 кВт.
- Удельная теплоёмкость воды, которая выступает в роли теплоносителя — 4200 Дж на 1 килограмм воды, на каждый градус температуры.
- Дельта температур между водой на подаче из котла и на последнем отрезке трубопровода в обратке.
Считается, что в нормальных условиях это последнее значение не бывает больше 20 градусов. В среднем берут 15 градусов.
Формула для того, чтобы рассчитать насос, следующая: G/(cх(Т1-Т2))= Q
- Q — это расходование теплоносителя в отопительной системе. Столько жидкости при определённой температуре нужно доставить циркуляционному насосу к отопительным приборам в единицу времени, чтобы теплопотери были компенсированы. Нецелесообразно приобретать устройство, у которого мощность больше. Это приведёт только к повышенному расходу электричества.
- G — теплопотери дома;
- Т2 — температура теплоносителя, вытекающая из теплообменника котла. Это именно тот уровень температуры, который нужен для обогрева помещения (примерно 80 градусов);
- Т1 — температура теплоносителя на обратном трубопроводе при входе в котёл (чаще всего 60 градусов);
- с — это удельная теплоёмкость воды (4200 Джоулей на кг).
При вычислении с помощью указанной формулы получается цифра 2,4 кг/с.
Теперь нужно перевести этот показатель на язык производителей циркуляционных насосов.
1 килограмм воды соответствует 1 кубическому дециметру. Один кубический метр равен 1000 кубических дециметров.
Получается, что в секунду насос перекачивает воду следующим объёмом:
- 2,4/1000=0,0024 куб. м.
Далее нужно перевести секунды в часы:
- 0,0024х3600=8,64 куб. м/ч.
Скорость теплоносителя
Затем, используя полученные значения расхода теплоносителя, необходимо для каждого участка труб перед радиаторами вычислить скорость движения воды в трубах по формуле:
,
где V — скорость движения теплоносителя, м/с;
m — расход теплоносителя через участок трубы, кг/с
ρ — плотность воды, кг/куб.м. можно принять равной 1000 кг/куб.м.
f — площадь поперечного сечения трубы, кв.м. можно посчитать по формуле: π * r2, где r — внутренний диаметр, деленный на 2
Калькулятор скорости теплоносителя
m = л/с; труба мм на мм; V = м/с
Особенности расчета систем отопления с термостатическими клапанами
- Техподдержка
- Статьи
- Особенности расчета систем отопления с термостатическими клапанами
#автоматика инженерных систем #проектирование #монтаж #наладка
Термостатические клапаны для радиаторов по сравнению с ручными радиаторными клапанами имеют особенности при гидравлическом расчёте. Эти особенности связаны со спецификой работы клапана в системе отопления.
Эти клапаны управляются термочувствительным элементом (термоголовкой), внутри которого находится сильфонная ёмкость, заполненная рабочим телом (газ, жидкость, твёрдое вещество) с высоким коэффициентом объемного расширения. При изменении температуры воздуха, окружающего сильфон, рабочее тело расширяется или сжимается, деформируя сильфон, который, в свою очередь, воздействует на шток клапана, открывая или закрывая его (рис. 1
).
Рис. 1. Схема работы термостатического клапана
Основной гидравлической характеристикой термостатического клапана является пропускная способность Kv
. Это расход воды, который способен пропустить через себя клапан при перепаде давления на нем в 1 бар. Индекс «
V
» обозначает, что коэффициент отнесен к часовому объемному расходу и измеряется в м3/ч. Зная пропускную способность клапана и расход воды через него, можно определить потерю давления на клапане по формуле:
ΔP
к = (
V
/
K
v)2 · 100, кПа.
Регулирующие клапаны, в зависимости от степени открытия, имеют разную пропускную способность. Пропускная способность полностью открытого клапана обозначается Kvs
. Потери давления на термостатическом радиаторном клапане при гидравлических расчетах, как правило, определяются не при полном открытии, а для определенной зоны пропорциональности –
X
p.
X
p – это зона работы термостатического клапана в интервале от температуры воздуха при полном закрытии (точка S на графике регулирования) до установленного пользователем значения допустимого отклонения температуры. Например, если коэффициент
Kv
дан при
X
p =
S
– 2, и термоэлемент установлен в такое положение, что при температуре воздуха 22 ˚С клапан будет полностью закрыт, то этот коэффициент будет соответствовать положению клапана при температуре окружающего воздуха 20 ˚С.
Отсюда можно сделать вывод, что температура воздуха в помещении будет колебаться в пределах от 20 до 22 ˚С. Показатель Xp
влияет на точность поддержания температуры. При
Xp
= (
S
– 1) диапазон поддержания температуры внутреннего воздуха будет в пределах 1 ˚С. При
Xp
= (
S
– 2) – диапазон 2 ˚С. Зона
X
p = (
S
– max) характеризует работу клапана без термочувствительного элемента.
В соответствии с ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в холодный период года в жилой комнате оптимальные температуры лежат в пределах от 20 до 22 ˚С, то есть, диапазон поддержания температуры в жилых помещениях зданий должен быть 2 ˚С. Таким образом, для расчёта жилых зданий требуется выбор значений пропускной способности при Xp
= (
S
– 2).
Рис. 2. Термостатический клапан VT.031
На рис. 3
показаны результаты стендового испытания термостатического клапана VТ.031 (
рис. 2
) с термостатическим элементом VТ.5000 с установленным значением «3». Точка
S
на графике это теоретическая точка закрытия клапана. Это температура, при которой клапан имеет настолько маленький расход, что его можно считать, практически, закрытым.
Рис. 3. График закрытия клапана VT.031 с термоэлементом VT.5000 (поз. 3) при перепаде давлений 10 кПа
Как видно на графике, клапан закрывается при температуре 22 ˚С. При понижении температуры воздуха, пропускная способность клапана увеличивается. На графике показаны значения расхода воды через клапан при температуре 21 (S
– 1) и 22 (
S
– 2) ˚С.
В табл. 1
представлены паспортные значения пропускной способности термостатического клапана VТ.031 при различных
Xp
.
Таблица 1. Паспортные значения пропускной способности клапана VT.031
DN клапана | 1/2» | |
Значение коэффициента пропускной способности Kv при | S – 1 | 0,35 |
S – 1,5 | 0,45 | |
S – 2 | 0,63 | |
S – 3 | 0,9 | |
Kvs ; м3/ч | 1,2 |
Клапаны испытываются на специальном стенде, показанном на рис. 4
. В ходе испытаний поддерживается постоянный перепад давления на клапане равный 10 кПа. Температура воздуха имитируется при помощи термостатической ванны с водой, в которую погружается термоголовка. Температура воды в ванне постепенно повышается, при этом фиксируются расходы воды через клапан до полного закрытия.
Рис. 4. Стендовые испытания клапана VT.032 на пропускную способность по ГОСТу 30815-2002
Кроме значений пропускной способности термостатические клапаны характеризуются таким показателем, как максимальный перепад давления. Это такой перепад давления на клапане, при котором он сохраняет паспортные регулировочные характеристики, не создает шум, а также при котором все элементы клапана не будут подвержены преждевременному износу.
В зависимости от конструкции, термостатические клапаны имеют различные значения максимального перепада давления. У большинства представленных на рынке радиаторных термостатических клапанов эта характеристика составляет 20 кПа. При этом, согласно п. 5.2.4 ГОСТ 30815-2002, температура, при которой клапан закроется, при максимальном перепаде давления, не должна отличаться от температуры закрытия при перепаде давления 10 кПа более чем на 1 ˚С.
Из графика на рис. 5
видно, что клапан VТ.031 при перепаде давления 10 кПа и уставке термоэлемента «3» закрывается при 22 ˚С.
Рис. 5. Графики закрытия клапана VT.031 с термоэлементом VT.5000 при перепаде давления 10 кПа (синяя линяя) и 100 кПа (красная линия)
При перепаде давления 100 кПа клапан закрывается при температуре 22,8˚С. Влияние дифференциального давления составляет 0,8 ˚С. Таким образом, в реальных условиях эксплуатации такого клапана при перепадах давления от 0 до 100 кПа, при настройке термоэлемента на цифру «3», диапазон температур закрытия клапана составит от 22 до 23 ˚С.
Если в реальных условиях эксплуатации перепад давления на клапане вырастет больше максимального, то клапан может создавать недопустимый шум, а также его характеристики будут существенно отличаться от паспортных.
Из-за чего же происходит увеличение перепада давления на термостатическом клапане во время эксплуатации? Дело в том, что в современных двухтрубных системах отопления расход теплоносителя в системе постоянно меняется, в зависимости от текущего теплопотребления. Какие-то терморегуляторы открываются, какие-то – закрываются. Изменение расходов по участкам приводит к изменению распределения давлений.
Для примера рассмотрим простейшую схему (рис. 6
) с двумя радиаторами. Перед каждым радиатором установлен термостатический клапан. На общей линии находится регулирующий вентиль.
Рис. 6. Расчетная схема с двумя радиаторами
Допустим, что потери давления на каждом термостатическом клапане составляет 10 кПа, потери давления на вентиле – 90 кПа, общий расход теплоносителя – 0,2 м3/ч и расход теплоносителя через каждый радиатор – 0,1 м3/ч. Потерями давления в трубопроводах пренебрегаем. Полные потери давления в этой системе составляют 100 кПа, и они поддерживаются на постоянном уровне. Гидравлику такой системы можно представить следующей системой уравнений:
где V
о – общий расход, м3/ч,
V
р – расход через радиаторы, м3/ч,
kv
в – пропускная способность вентиля, м3/ч,
kv
т.к. – пропускная способность термостатических клапанов, м3/ч, Δ
P
в – перепад давления на вентиле, Па, Δ
P
т.к – перепад давления на термостатическом клапане, Па.
Рис. 7. Расчетная схема с отключенным радиатором
Предположим, что в помещении, где установлен верхний радиатор, температура увеличилась, и термостатический клапан полностью перекрыл поток теплоносителя через него (рис. 7
). В этом случае весь расход будет идти только через нижний радиатор. Перепад давления в системе выразится следующей формулой:
где Vо′ – общий расход в системе после отключения одного термостатического клапана, м3/ч, Vp′ – расход теплоносителя через радиатор, в данном случае он будет равен общему расходу; м3/ч.
Если принять во внимание, что перепад давления поддерживается постоянным (равным 100 кПа), то можно определить расход, который установится в системе после отключения одного из радиаторов.
Потери давления на вентиле снизятся, так как общий расход через вентиль уменьшился с 0,2 до 0,17 м3/ч. Потери давления на термостатическом клапане наоборот вырастут, потому что расход через него вырос с 0,1 до 0,17 м3/ч. Потери давления на вентиле и термостатическом клапане составят:
Из приведенных расчетов можно сделать вывод, что перепад давления на термостатическом клапане нижнего радиатора при открытии и закрытии термостатического клапана верхнего радиатора будет варьироваться от 10 до 30,8 кПа.
Но что будет, если оба клапана перекроют движение теплоносителя? В этом случае потери давления на вентиле будут нулевыми, так как движения теплоносителя через него не будет. Следовательно, разница давлений до золотника/после золотника в каждом радиаторном клапане будет равна располагаемому напору и составит 100 кПа.
Если используются клапаны с допустимым перепадом давлений меньше этой величины, то клапан может открыться, несмотря на отсутствии реальной потребности в этом. Поэтому перепад давлений на регулируемом участке сети должен быть ниже максимально допустимого перепада давления на каждом терморегуляторе.
Предположим, что вместо двух радиаторов в системе установлено некое множество радиаторов. Если в какой-то момент все терморегуляторы, кроме одного, закроются, то потери давления на вентиле будут стремиться к 0, а перепад давления на открытом термостатическом клапане будет стремиться к располагаемому напору, т.е., для нашего примера, к 100 кПа.
В этом случае расход теплоносителя через открытый радиатор будет стремиться к значению:
То есть в самом неблагоприятном случае (если из множества радиаторов открытым останется только один) расход на открытом радиаторе вырастет более чем в три раза.
Насколько же измениться мощность отопительного прибора при таком увеличении расхода? Теплоотдача Q
секционного радиатора считается по формуле:
где Q
н – номинальная мощность отопительного прибора, Вт, Δ
t
ср – средняя температура отопительного прибора, ˚С,
t
в – температура внутреннего воздуха, ˚С,
V
пр – расход теплоносителя через отопительный прибор,
n
– коэффициент зависимости теплоотдачи от средней температуры прибора,
p
– коэффициент зависимости теплоотдачи от расхода теплоносителя.
Предположим, что отопительный прибор имеет номинальную теплоотдачу Q
н = 2900 Вт, расчётные параметры теплоносителя 90/70 ˚С. Коэффициенты для радиатора принимаются:
n
= 0,3, p = 0,015. В расчётный период при расходе 0,1 м3/ч такой отопи- тельный прибор будет иметь мощность:
Чтобы узнать мощность прибора при Vр’’=0,316 м³⁄ч необходимо решить систему уравнений:
Методом последовательных приближений получаем решение этой системы уравнений:
Отсюда можно сделать вывод, что в системе отопления при самых неблагоприятных условиях, когда все отопительные приборы, кроме одного, на участке перекрыты, перепад давления на термостатическом клапане может вырасти до располагаемого напора. В приведенном примере при располагаемом напоре 100 кПа расход увеличится в три раза, при этом мощность прибора возрастёт всего на 17 %.
Повышение мощности отопительного прибора приведёт к увеличению температуры воздуха в отапливаемом помещении, что, в свою очередь, вызовет закрытие термостатического клапана. Таким образом, колебание перепада давления на термостатическом клапане во время эксплуатации в пределах паспортного максимального значения перепада является допустимым, и не приведет к нарушению в работе системы.
В соответствии с ГОСТ 30815-2002 максимальный перепад давления на термостатическом клапане определяется производителем из соблюдения требований бесшумности и сохранения регулировочных характеристик. Однако, изготовление клапана с широким диапазоном допустимых перепадов давления сопряжено с определенными конструктивными трудностями. Особые требования так же предъявляются к точности изготовления деталей клапана.
Большинство производителей выпускают клапаны с максимальным перепадом давления 20 кПа.
Исключение составляют клапаны VALTEC VT.031 и VT.032 (клапан термостатический прямой) с максимальным перепадом давления 100 кПа (рис. 8
) и клапаны фирмы Giacomini серии R401–403 с максимальным перепадом давления 140 кПа (
рис. 9
).
Рис. 8. Технические характеристики радиаторных клапанов VT.031, VT.032
Рис. 9. Фрагмент технического описания термостатического клапана Giacomin R403
Рис. 10. Фрагмент технического описания термостатического клапана
При изучении технической документации необходимо быть внимательным, так как некоторые производители переняли практику банкиров — вставлять мелкий текст в примечаниях.
На рис. 10
представлен фрагмент из технического описания одного из типов термостатических клапанов. В основной графе указано значение максимального перепада давления 0,6 бара (60 кПа). Однако в сноске есть примечание, что действительный диапазон работы клапана ограничен всего лишь 0,2 барами (20 кПа).
Рис. 11. Золотник термостатического клапана с осевым креплением уплотнителя
Ограничение вызвано шумом, возникающим в клапане при высоких перепадах давления. Как правило, это касается клапанов с устаревшей конструкцией золотника, в котором уплотнительная резинка просто крепится по центру заклепкой или болтом (рис. 11
).
При больших перепадах давления уплотнитель такого клапана начинает вибрировать из-за неполного прилегания к золотниковой тарелке, вызывая акустические волны (шум).
Повышенный допустимый перепад давления в клапанах VALTEC и Giacomini достигнут за счёт принципиально иной конструкции золотниковых узлов. В частности, у клапанов VT.031 использован латунный золотниковый плунжер, «футерованный» эластомером EPDM (рис. 12
).
Рис. 12. Вид золотникового узла клапана VT.031
Сейчас разработка термостатических клапанов с широким диапазоном рабочих перепадов давления является одной из приоритетных задач специалистов многих компаний.
- Исходя из изложенного, можно дать следующие рекомендации по проектированию систем отопления с термостатическими клапанами:
- Коэффициент пропускной способности термостатического клапана рекомендуется определять, исходя из допустимого диапазона температур обслуживаемого помещения. Например, для жилых комнат по ГОСТ 30494-2011 оптимальные пара- метры внутреннего воздуха находятся диапазоне 20–22 ˚С. Значение Kv в этом случае принимается при Xp = S – 2. В помещениях категории 3а (помещения с массовым пребыванием людей, в которых люди находятся преимущественно в положении сидя без уличной одежды) оптимальный диапазон температур 20–21 ˚С. Для этих помещений значение Kv рекомендуется принимать при Xp = S – 1.
- На циркуляционных кольцах системы отопления должны быть установлены устройства (перепускные клапаны либо регуляторы перепада давления), ограничивающие максимальный перепад давления таким образом, чтобы перепад давления на клапане не превысил предельного паспортного значения.
Приведем несколько примеров подбора и установки устройств, для ограничения перепада давления на участке с термостатическими клапанами.
Пример 1.
Расчётные потери давления в квартирной системе отопления (
рис. 13
), включая термостатические клапаны, составляют 15 кПа. Максимальный перепад давления на термостатических клапанах равен 20 кПа (0,2 бара). Потери давления на коллекторе, включая потери на теплосчётчиках, балансировочных клапанах и прочей арматуре примем 8 кПа. В итоге перепад давления до коллектора составляет 23 кПа.
Если установить регулятор перепада давления или перепускной клапан до коллектора, то в случае перекрытия всех термостатических клапанов в данной ветке, перепад на них составит 23 кПа, что превышает паспортное значение (20 кПа). Таким образом, в данной системе регулятор перепада давления или перепускной клапан должен устанавливаться на каждом выходе после коллектора, и должен быть настроен на перепад 15 кПа.
Рис. 13. Схема к примеру 1
Пример. 2
. Если принять не тупиковую, а лучевую систему поквартирного отопления (
рис. 14
), то потери давления в ней будут значительно ниже. В приведенном примере коллекторно-лучевой системы потери в каждой радиаторной петле составляют 4 кПа. Потери давления на квартирном коллекторе примем 3 кПа, а потери давления на этажном коллекторе – 8 кПа.
В этом случае регулятор перепада давления можно расположить перед этажным коллектором и настроить его на перепад 15 кПа. Такая схема позволяет сократить количество регуляторов перепада давления и существенно удешевить систему.
Рис. 14. Схема к примеру 2
Пример 3.
В данном варианте используются радиаторные термостатические клапаны с максимальным перепадом давления 100 кПа (
рис. 15
). Так же как и в первом примере, примем, что потери давления в квартирной системе отопления составляют 15 кПа. Потери давления на квартирном узле ввода (квартирной станции) 7 кПа. Перед квартирной станцией перепад давления составит 23 кПа. В десятиэтажном здании общую длину пары стояков системы отопления можно принять порядка 80 м (сумма подающего и обратного трубопроводов).
Рис. 15. Схема к примеру
При средних линейных потерях давления по стояку 300 Па/м, общие потери давления в стояках составят 24 кПа. Отсюда следует, что перепад давления у основания стояков составит 47 кПа, что меньше максимально допустимого перепада давления на клапане.
Если установить регулятор на перепад давления на стояк и настроить его на давление 47 кПа, то даже когда все радиаторные клапаны, подключенные к этому стояку, закроются, перепад давления на них будет ниже 100 кПа.
Таким образом, можно существенно снизить стоимость системы отопления, установив вместо десяти регуляторов перепада давления на каждом этаже, один регулятор у основания стояков.
Автор: Жигалов Д.В.
Распечатать статью: Особенности расчета систем отопления с термостатическими клапанами
“витнуть
© Правообладатель ООО «Веста Регионы», 2010 Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.
Потери напора на местных сопротивлениях
Местные сопротивления на участке труб — это сопротивление на фитингах, арматуре, оборудовании и т.п. Потери напора на местных сопротивлениях рассчитываются по формуле:
где Δpм.с. — потери напора на местных сопротивлениях, Па;
Σξ — сумма коэффициентов местных сопротивлений на участке; коэффициенты местных сопротивлений указываются производителем для каждого фитинга
V — скорость теплоносителя в трубопроводе, м/с;
ρ — плотность теплоносителя, кг/м3.
Расчет циркуляционного насоса
Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:
P = Rl + Z, где:
- Р – потери давления в сети трубопроводов, Па;
- R – удельное сопротивление трению, Па/м;
- l – длина трубы на одном участке, м;
- Z – потеря давления в местных сопротивлениях, Па.
Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.
Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:
Rl = 26.6 / 1000 х 5 = 0.13 Бар.
Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.
Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.
Итоги гидравлического расчета
В итоге необходимо просуммировать сопротивления всех участков до каждого радиатора и сравнить с контрольными значениями. Для того, чтобы насос, встроенный в газовый котел, обеспечил теплом все радиаторы, потери напора на самой длинной ветке не должны превышать 20000 Па. Скорость движения теплоносителя на любом участке должна быть в диапазоне 0,25 — 1,5 м/с. При скорости выше 1,5 м/с в трубах может появиться шум, а минимальная скорость в 0,25 м/с рекомендуется по СНиП 2.04.05-91 во избежание завоздушивания труб.
Для того, чтобы выдержать вышеуказанные условия, достаточно правильно подобрать диаметры труб. Это можно сделать по таблице.
Труба | Минимальная мощность, кВт | Максимальная мощность, кВт |
Металлопластиковая труба 16 мм | 2,8 | 4,5 |
Металлопластиковая труба 20 мм | 5 | 8 |
Металлопластиковая труба 26 мм | 8 | 13 |
Металлопластиковая труба 32 мм | 13 | 21 |
Полипропиленовая труба 20 мм | 4 | 7 |
Полипропиленовая труба 25 мм | 6 | 11 |
Полипропиленовая труба 32 мм | 10 | 18 |
Полипропиленовая труба 40 мм | 16 | 28 |
В ней указана суммарная мощность радиаторов, которые труба обеспечивает теплом.
Расчет тепловых потерь
Такой расчет можно выполнить самостоятельно, так как формула уже давно выведена. Однако расчет расхода тепла достаточно сложный и требует рассмотрения сразу нескольких параметров.
Если говорить просто, то сводится он только к определению потерь тепловой энергии, выраженной в мощности теплового потока, которую во внешнюю среду излучает каждый квадратный м площади стен, перекрытий, пола и крыш здания.
Статья по теме: Как подобрать интересный интерьер для комнаты
Если брать среднее значение таких потерь, то они будут составлять:
- около 100 Ватт на единицу площади — для среднестатистических стен, например, кирпичных стен нормальной толщины, с нормальной внутренней отделкой, с установленными двойными стеклопакетами;
- больше 100 Ватт или значительно больше 100 Ватт на единицу площади, если речь идет о стенах с недостаточной толщиной, неутепленных;
- около 80 Ватт на единицу площади, если речь идет о стенах с достаточной толщиной, имеющих наружную и внутреннюю теплоизоляцию, с установленными стеклопакетами.
Для определения этого показателя с большей точностью выведена специальная формула, в которой некоторые переменные являются табличными данными.
Быстрый подбор диаметров труб по таблице
Для домов площадью до 250 кв.м. при условии, что стоит насос 6-ка и радиаторные термоклапаны, можно не делать полный гидравлический расчет. Можно подобрать диаметры по таблице ниже. На коротких участках можно немного превысить мощность. Расчеты произведены для теплоносителя Δt=10oC и v=0,5м/с.
Труба | Мощность радиаторов, кВт |
Труба 14х2 мм | 1.6 |
Труба 16х2 мм | 2,4 |
Труба 16х2,2 мм | 2,2 |
Труба 18х2 мм | 3,23 |
Труба 20х2 мм | 4,2 |
Труба 20х2,8 мм | 3,4 |
Труба 25х3,5 мм | 5,3 |
Труба 26х3 мм | 6,6 |
Труба 32х3 мм | 11,1 |
Труба 32х4,4 мм | 8,9 |
Труба 40х5,5 мм | 13,8 |
Точный расчет тепловых потерь дома
Для количественного показателя тепловых потерь дома существует специальная величина, которая называется тепловым потоком, а измеряется она в кКал/час. Эта величина физически показывает расход тепла, которое отдается стенами в окружающую среду при данном тепловом режиме внутри здания.
Зависит эта величина напрямую от архитектуры здания, от физических свойств материалов стен, пола и потолка, а также от многих других факторов, которые могут стать причиной выветривания теплого воздуха, например, неправильное устройство теплоизоляционного слоя.
Итак, величина тепловой потери здания является суммой всех тепловых потерь отдельных его элементов. Эта величина высчитывается по формуле: G = S*1/ Pо*(Тв- Тн)к, где:
- G — искомая величина, выраженная в кКал/ч;
- Po — сопротивление процессу обмена тепловой энергии (теплопередачи), выраженная в кКал/ч, это есть кв.м*ч*температура;
- Тв, Тн — температура воздуха внутри помещения и снаружи соответственно;
- к — уменьшающий коэффициент, который для каждого теплового заграждения является своим.
Стоит заметить, что поскольку расчет производится не каждый день, а в формуле есть показатели температуры, которые изменяются постоянно, то такие показатели принято брать в усредненном виде.
Это значит, что показатели температуры берутся средние, причем для каждого отдельного региона такой показатель будет своим.
Итак, теперь формула не содержит неизвестных членов, что позволяет осуществить достаточно точный расчет тепловых потерь конкретного дома. Остается узнать только понижающий коэффициент и значение величины Pо — сопротивления.
Обе эти величины в зависимости от каждого конкретного случая можно узнать из соответствующих справочных данных.
Некоторые значения понижающего коэффициента:
- пол по грунту или деревянным лагам — значение 1;
- перекрытия чердачные, при наличии кровли с кровельным материалом из стали, черепицы на разреженной обрешетке, а также кровли из асбестоцемента, бесчердачное покрытие с устроенной вентиляцией, — значение 0,9;
- такие же перекрытия, как и в предыдущем пункте, но устроенные на сплошном настиле, — значение 0,8;
- перекрытия чердачные, с кровлей, кровельным материалом которой является любой рулонный материал, — значение 0,75;
- любые стены, которые разделяют между собой отапливаемое помещение с неотапливаемым, которое, в свою очередь, имеет наружные стены, — значение 0,7;
- любые стены, которые разделяют между собой отапливаемое помещение с неотапливаемым, которое, в свою очередь, не имеет наружных стен, — значение 0,4;
- полы, устроенные над погребами, расположенными ниже уровня наружного грунта, — значение 0,4;
- полы, устроенные над погребами, расположенными выше уровня наружного грунта, — значение 0,75;
- перекрытия, которые расположены над подвальными помещениями, которые располагаются ниже уровня наружного грунта или выше на максимум 1 м, — значение 0,6.
Статья по теме: Как правильно установить межкомнатную дверь своими руками (фото и видео)
Исходя из вышеописанных случаев, можно примерно представить себе масштаб, и для каждого конкретного случая, который не вошел в данный список, самостоятельно выбрать понижающий коэффициент.
Некоторые значения для сопротивления теплопередаче:
Значение сопротивления для сплошной кирпичной кладки равно 0,38.
- для обычной сплошной кирпичной кладки (толщина стены примерно равна 135 мм) значение равно 0,38;
- то же, но с толщиной кладки в 265 мм — 0,57, 395 мм — 0,76, 525 мм — 0,94, 655 мм — 1,13;
- для сплошной кладки, имеющей воздушную прослойку, при толщине 435 мм — 0,9, 565 мм — 1,09, 655 мм — 1,28;
- для сплошной кладки из декоративного кирпича для толщины в 395 мм — 0,89, 525 мм — 1,2, 655 мм — 1,4;
- для сплошной кладки с термоизоляционным слоем для толщины в 395 мм — 1,03, 525 мм — 1,49;
- для деревянных стен из отдельных деревянных элементов (не брус) для толщины в 20 см — 1,33, 22 см — 1,45, 24 см — 1,56;
- для стен из бруса с толщиной 15 см — 1,18, 18 см — 1,28, 20 см — 1,32;
- для чердачного перекрытия из железобетонных плит с наличием утеплителя при их толщине в 10 см — 0,69, 15 см — 0,89.
Имея такие табличные данные, можно приступать к выполнению точного расчета.
Подведение итогов
Итак, расчет теплоносителя в системе отопления показывает, какое количество воды требуется всей системе отопления, чтобы поддерживать помещение дома в нормальном температурном режиме. Эта же цифра условно равна мощности насоса, который, собственно, и будет выполнять доставку теплоносителя к радиаторам, где он будет отдавать часть своей тепловой энергии в помещение.
Стоит заметить, что средняя мощность насосов равна примерно 10 куб.м/ч, что дает небольшой запас, так как тепловой баланс нужно не только сохранять, но иногда, по требованию владельца, увеличивать температуру воздуха, на что, собственно, и нужна дополнительная мощность.
Опытные специалисты рекомендуют приобретать насос, который примерно в 1,3 раза мощнее необходимого. Говоря про газовый отопительный котел, который, как правило, уже оборудован таким насосом, следует обратить свое внимание на этот параметр.
Перевод результата к нормальному виду
Стоит заметить, что на практике такого расхода воды нигде не встретишь. Все производители насосов для воды выражают мощность насоса в кубометрах за час.
Следует произвести некоторые преобразования, вспомнив курс школьной физики. Итак, 1 кг воды, то есть теплоносителя, это есть 1 куб. дм воды. Чтобы узнать, сколько весит один кубометр теплоносителя, нужно узнать, сколько в одном кубическом метре кубических дециметров.
Используя некоторые простейшие расчеты или просто воспользовавшись табличными данными, получим, что в одном кубическом метре содержится 1000 кубических дециметров. Это означает, что один кубометр теплоносителя будет иметь массу 1000 кг.
Тогда за одну секунду требуется перекачивать воду объемом в 2,4/1000 = 0,0024 куб. м.
Теперь остается перевести секунды в часы. Зная, что в одном часе 3600 сек, получим, что за один час насос должен перекачивать 0,0024*3600 = 8,64 куб.м/ч.